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GEOS-C ORBIT DETERMINATION WITH
SATELLITE TO SATELLITE TRACKING

ABSTRACT

This report studies the feasibility of employing satellite to
satellite tracking in lieu of ground based tracking to satisfy
the orbit determination requirements of the GEOS-C mis-
sion. It is shown that with proper estimation procedures
it is possible to obtain from S. S. T. data a GEOS-C orbit
whose altitude error averages about 1 meter. The useful-
ness of this data type for geopotential recovery is also
indicated.
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GEOS-C ORBIT DETERMINATION WITH
SATELLITE TO SATELLITE TRACKING

INTRODUCTION

Satellite to satellite tracking (S. S.T.) by means of a synchronous satellite

has been recognized as a promising data type for satisfying the stringent

orbit determination demands of the Earth and Ocean Physics Application

Program. 1,2, 3, 4 In this report we study the feasibility of employing this data

type in lieu of ground based tracking to satisfy the orbit determination require-

ments of the GEOS-C mission, It is shown that with proper estimation pro-
cedures it is possible to obtain from S. S. T. data a GEOS-C orbit whose altitude

error averages about 1 meter. This result is significant in itself with respect

to the GEOS-C mission. It is also significant in that it suggests what the proper

use of S. S. T. data can accomplish in terms of economical and accurate orbit
determination of future applications satellites.

ASSUMPTIONS

The GEOS-C orbit will be circular with an altitude of approximately 850km and

an inclination of 650. The period is 102 minutes. For this study a relay satel-
lite is assumed at synchronous altitude and at 940 west longitude. The receiving

station is Rosman. The tracking assumptions and error sources are displayed

in Table 1.

With regard to range rate sum data the velocity uncertainty of the relay satellite
is far more critical than position uncertainty. For this reason a serious mis-
take is introduced if the relay satellite is treated as an ordinary tracking station
which happens to be at synchronous altitude. Under such an assumption there is
no doppler shift due to relative motion between the relay satellite and the ground
based station and hence the range rate sum data is left unbiased. In actuality the
relay satellite is in a Keplerian orbit. Consequently an initial position error
quickly propagates into a velocity error which in turn biases the range rate sum
data. In this report the velocity errors in the relay satellite are correctly
propagated into orbital errors of the GEOS-C satellite.

The results shown in the next section were obtained by means of covariance
analysis techniques. Hence we have assumed that over the range of expected
errors, perturbations of orbital estimates are approximately linear functions
of perturbations of the error sources. With the use of covariance analysis it is
relatively easy to isolate the effect of any subset of error sources on the orbital
state estimate at any point along the arc. Such an ability is a valuable asset in
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Table 1

Tracking and Error Assumptions for Error Analysis of GEOS-C
Orbit Determination With S. S. T. Data

Tracking Assumptions

Data Type Range Rate Sum

Data Rate 1/min.

Arc Length 5 days

Data Noise 0. 1 cm/sec

Systematic Error Assumptions

Error Source Standard Deviation

Rosman Survey Error 10 meters in each component

Data Bias 0. 1 cm/sec

Relay Satellite 300 meters in each position component
Epoch State 3 cm/sec in each velocity component

GEOS-C Satellite 50 meters in each position component
Epoch State 5 cm/sec in each velocity component

Spherical Harmonic Coefficients Full difference between S. A. O. 69 field
to Degree and Order 8 and G. E. M. 4 field

determining which error sources can be ignored and which error sources must
be simultaneously adjusted along with epoch state. The mathematical develop-
ment of our covariance analysis techniques is given in the appendix.

RESULTS

The simplest estimation of GEOS-C state is obtained when the satellite epoch
vector is adjusted in a weighted least squares mode and all other parameters
are fixed at nominal values. The covariance matrix of this estimator was ob-
tained and propagated along the 5 day are. The unadjusted error sources and
associated standard deviations are those shown in Table 1. Figure 1, is a plot
of the resultant standard deviation of the radial component of the GEOS-C orbit.
The plot was stable over the entire 5 day arc and hence only the results for the
first 12 hours are shown.
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ASSUMPTION

GEOS-C STATE ESTIMATED. ALL OTHER
ERROR SOURCES IGNORED.
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Figure 1. GEOS-C Radial Std. Dev. vs. Time From Epoch

As shown in the Appendix, covariance analysis techniques permit one to de-

termine at any point in the arc, the R. S. S. contribution to the standard deviation

of the estimate of a given state component due to a given unadjusted error source.

These contributions are called aliasing terms. Table 2 shows the maximum

aliasing along the arc in the radial, along track, and cross track directions due

to data bias, Rosman survey error, relay satellite epoch state error, and geo-

potential. For any given point in the arc and for any given component, the

aliasing due to geopotential error was obtained by computing the root sum square

of the corresponding aliasing terms due to errors in individual geopotential

coefficients up to and including degree and order eight. Similarly the aliasing

due to relay satellite orbital error is the root sum square of six alias terms

and the aliasing due to Rosman survey error is the root sum square of three

alias terms. Table 2 indicates that the dominant error source for GEOS-C

orbit determination is the uncertainty of the relay satellite state and that data

bias and Rosman survey error are not significant error sources.

With regard to GEOS-C orbit determination, attention is focused primarily on

the altitude estimation requirements imposed by its on-board altimeter. Since

the instrument is capable of one meter precision it is required to determine the

GEOS-C altitude with a standard deviation of one meter. From Table 2 it is

clear that for this to be accomplished the relay satellite state must be simul-

taneously estimated along with GEOS-C state. Figure 2 shows the resultant

standard deviation in the estimation of the radial component of GEOS-C position

3



Table 2

Maximum Aliasing in Meters in Radial, Along Track, and Cross Track
Components of GEOS-C State Due to Data Bias, Rosman Survey Error,

Relay Satellite Epoch State Error, and Geopotential Error

Rosman Relay Satellite GeopotentialData Bias
Survey Error Epoch State Error Error

Radial 0. 025 0.002 229 7.3

Along Track 3. 300 0.008 1691 27.3

Cross Track 0.210 0. 002 4379 17. 3

ASSUMPTION
GEOS-C STATE SIMULTANEOUSLY

ESTIMATED WITH RELAY
SATELLITE STATE

-

i1 2710 11 12

TIME (IN HOURS) FROM EPOCH

Figure 2. GEOS-C Radial Std. Dev. vs. Time From Epoch
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for the first 12 hours after epoch when GEOS-C state is estimated simultaneously

along with relay satellite state. The average radial uncertainty along the 5 day

arc was 6. 2 meters.

The object is to satisfy the constraint of one meter radial uncertainty by adding

the smallest possible number of coefficients to the adjusted parameter set which

will accomplish the task. Since it is not possible to examine the effects of plac-

ing each of the possible combinations of coefficients in the adjusted mode, an

essentially suboptimal procedure for determining an efficient estimation strategy

must be implemented. Our procedure is recursive. We choose the N + 1st

coefficient to be adjusted by examining the results of adjusting N coefficients

along with GEOS-C and relay satellite state and identifying as the next coefficient

to be adjusted the one which produces the maximum radial aliasing along the 5

day arc. The recursive process was automated in our covariance analysis

computer program and was terminated when an average radial error of one meter

along the 5 day arc was achieved.

The ordering of coefficients according to their maximum radial aliasing varies

as terms are added to the adjusted state. This is why the elaborate recursive

procedure was necessary to identify an efficient estimation strategy. As an ex-

ample, when geopotential coefficients S(7, 2), S(6, 6), C(7, 0), C(7, 6), and C(6, 5)

are adjusted along with GEOS-C and relay satellite state the dominant error

source is the uncertainty of C(7, 2) which provides a maximum radial aliasing of

2. 9 meters. The uncertainty of geopotential coefficient S(4, 3) is the sixth most

important error source with a maximum radial aliasing of 1. 9 meters. When

coefficient C(7, 2) is added to the adjusted state, the uncertainty of coefficient

S(4, 3) becomes the most significant error source with a maximum radial alias-

ing of 3. 6 meters. Notice also that our recursive procedure was oriented

toward identifying the most efficient estimation algorithm for minimizing the

average radial error. If the along track or cross track or the total position

errors were to be minimized a different set of geopotential coefficients would

have been identified.

Table 3 displays the average error in the estimation of radial, along track, and

cross track components of GEOS-C state as a function of the number of geopo-

tential coefficients simultaneously adjusted along with GEOS-C and relay satel-

lite state. Figures 3, 4, and 5 provide the standard deviations of the radial,
along track, and cross track components of GEOS-C state when the 31 dominant

geopotential coefficients are adjusted. The 31 coefficients which when adjusted

yield an average error of one meter in the estimate of the radial component of

GEOS-C state are given below in the order in which they were identified in the

recursive procedure: S(7, 2), S(6, 6), C(7, 0), C(7, 6), C(6, 5), C(7, 2), S(4, 3), S(5, 5),
C(4,4), C(4,3), S(8,1), C(6, 6), C(8, 7), C(6,4), C(5, 5), C(2,2), S(5,4), S(6,4),
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Table 3

Average Radial, Along Track, and Cross Track GEOS-C Errors in Meters
as a Function of Numbers of Estimated Geopotential Coefficients

Average Along Average Cross
Number of Geopotential Average Radial Track Error Track Error
Coefficients Estimated Error (Meters) (Mte (Meters)

(Meters) (Meters)

0 6.2 43.7 63.0

5 4.0 39.6 60.5

10 3.0 27.2 42.6

15 2.3 25.8 37.3

20 1.8 18.3 27.0

25 1.5 13.5 21.3

31 1.0 10.9 19.5

ASSUMPTION

GEOS-C STATE SIMULTANEOUSLY ESTIMATED
WITH RELAY SATELLITE STATE AND 31

2.0 - DOMINANT GEOPOTENTIAL COEFFICIENTS

S1.5-

1.0

0.5

1 2 3 4 5 6 7 8 9 10 11 12

TIME (IN HOURS) FROM EPOCH

Figure 3. Radial Std. Dev. vs. Time From Epoch
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ASSUMPTION
GEOS-C STATE SIMULTANEOUSLY ESTIMATED WITH

RELAY SATELLITE STATE AND 31 DOMINANT
GEOPOTENTIAL COEFFICIENTS

12.0

c 11.5

2
0 10.5

0 1 2 3 4 5 6 7 8 9 10 11 12

TIME (IN HOURS) FROM EPOCH

Figure 4. GEOS-C Along Track Std. Dev. vs. Time From Epoch

C(7,4), S(6,5), C(7,7), C(5,3), S(4,2), S(7,3), S(7,7), S(5,3), C(5,1), C(8,4),
S(6, 2), C(3, 2), S(5, 1). The resultant estimates of these coefficients are rel-
atively independent and are of good quality. The a priori standard deviations
of the coefficients were taken to be the difference in representations in the
S. A. 0. 69 field and the G. E. M. 4 field. The resultant standard deviations of
the estimates of the coefficients averaged about 20% of the a priori standard de-
viations. This suggests that satellite to satellite tracking is a useful data type
for geopotential determination. The results also indicate that this estimation
procedure significantly improves knowledge of relay satellite state. The total
position error decreased from about 500 meters to about 150 meters. The total
velocity error decreased from about 5 cm/sec to about 1 cm/sec.

CONCLUSIONS

This paper has shown the feasibility of determining application satellite orbits
with satellite to satellite tracking. The uncertainty of the relay satellite state
is the dominant error source. The relay satellite state must be simultaneously
adjusted along with user satellite state in order to obtain satisfactory results.
Relay station survey error and data bias are not significant error sources.



ASSUMPTION

GEOS-C STATE SIMULTANEOUSLY ESTIMATED
WITH RELAY SATELLITE STATE AND 31

26 - DOMINANT GEOPOTENTIAL COEFFICIENTS

24
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Figure 5. GEOS-C Cross Track Std. Dev. vs. Time From Epoch

A covariance analysis was performed to determine the feasibility of determining
the GEOS-C o-'-i from 5 days of range rate sum data relayed from a single
synchronous satellite. It was shown that if relay satellittestate and 31 dominant
geopotential coefficients are simultaneously adjusted along with GEOS-C state
the radial component of state can be determined with one meter accuracy. The
estimates of dominant geopotential coefficients as well as relay satellite state
are also substantially improved.
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APPENDIX

COVARIANCE ANALYSIS AS APPLIED TO ORBIT DETERMINATION

COMPUTING COVARIANCE MATRICES

Let Y(m) be an m dimensional vector consisting of the differences between the
correct values of observations of a satellite and nominal values of the observa-
tions as determined from a nominal orbit. Also let z (n) be an n dimensional
vector of differences between actual and nominal values of the state of the

satellite at an epoch and differences between actual and nominal values of
parameters in the dynamic and measurement models whose associated un-
certainties may limit our ability to estimate satellite state from the data. The
sensitivity matrix c (m, n) is defined as that matrix whose element in the ith

row and the jth column is the partial derivative of 3(i) with respect to z(j). A

first order Taylor series expansion of the functional relationship between - and
z about the nominal value of - yields

y cC (A-l)

An orbit determination program in processing observations y of y to obtain a
least square adjustment to i computes a so-called normal matrix defined as

7 (n, n) cT Wc (A-2)

where w is a weighting matrix and is usually the inverse of the covariance
matrix of the observations y of -. Once an orbit determination program com-
putes and stores the normal matrix, a number of questions can be raised and
answered at very little cost in terms of computation time.

The best estimate of the state of the satellite at epoch is obtained by perform-
ing a least squares adjustment of the state at epoch and all other parameters
with which are associated significant uncertainties. But frequently this straight-
forward approach leads to severe core storage requirements. In practice some
of the parameters in the dynamic and measurement models are estimated along
with state and others are fixed at their nominal values and left unadjusted in the
least squares process. In order to determine the consequences of estimating
some parameters and ignoring others it is useful to compute the covariance
matrix of such a least squares estimation procedure.

11 P ECC INc PAGE BLANK NOT FILMED



Let ~ be decomposed into two disjoint parameter sets as follows

Z = (A-3)

where '1, is a set of n 1 , parameters which are to be estimated in a least squares
process and '2 is a set of n 2 parameters whose nominal values are left un-
adjusted by the least squares process but whose uncertainties are to be con-
sidered in computing the covariance matrix of the resulting estimator. Define
a matrix A(m, n 1) as a matrix whose element in the ith row and jth column is
the partial derivative of '(i) with respect to x, (j). Analogously define B(m, n 2)
as the matrix whose element in the ith row and jth column is the partial deriva-
tive of 7(i) with respect to x 2 (j). For future reference notice that the normal
matrix 77 of 2Z as computed and stored by an orbit determination program and
defined by Equation A-2 can be written as

[ATwA ATwB (A-4)

BTwA BTwB

Assume that there exists a priori estimates of 'i and '2 with properties

x; = X1 + a , E(al) O, E(aaT) P 1

x 2 = x 2 + a2, E(a 2 ) = 6, E(a 2 a) 2 P2

and assume that the observation vector y or has properties

y = y + v, E(v) = O, E(vv T ) = w-

The least squares estimate of -1 is obtained as the value of X1 which minimizes
the loss function

L(x 1 ) = (y - Ax - Bx )T w(y - Ax - Bx 2') + (x; - X1 )T P;l(x; - X1 ) (A-5)

12



The resulting least squares estimator of x, is well known to be

x1 
= (ATwA + P; 1)- [ATw(y - Bx 2 ) + P1' xi] (A-6)

Define

P = [E (X - ) (x - )T] (A-7)

A series of substitutions reveals that

x - = (ATwA + P1') - 1 ( - ATwBa2 + ATwv + P 1 ) (A-8)

Equation 8 yields

P = (ATwA + P'1)-1 + (ATwA + Pi )-I ATwBP 2 BTwA(ATwA + P' )-1 (A-9)

Notice that the right side of Equation 9 can be computed if one has a priori co-

variance matrices P1 and P 2 , and the upper right and upper left portions of the
normal matrix. To determine the covariance matrix of an estimator which

estimates some subset of 2 other than z1, all that is necessary is to permute

the rows and columns of r7 in the appropriate fashion and proceed as before.

Thus if one assumes that the normal matrix defined by Equation 2 is precom-

puted it becomes an easy matter to obtain the resultant covariance matrix when

any subset of the ' parameters are estimated in a least squares sense and the

rest are ignored.

THE ALIAS MATRIX

Assume that all the data has the same variance. Hence

w = (Io)- (A-10)

where - 2 is the common variance of each data point. Also assume that the a

priori estimates of the unadjusted parameters are independent. Under this

13



assumption the covariance matrix P 2 of x can be written as

2 2
ex 0

P2 2
2 =.(A-11)

0 02
n

where oi2 is the a priori variance of the ith unadjusted parameter. Also define
a matrix K(n , n 2) as

K. = (ATwA) - 1 ATwB (A-12)

With these assumptions Equation 9 yields the following expression for the ith
diagonal element of P

n
2

P(I, I) =  (8i,j aj)2 (A-13)

j=0

where Pi,o is the ith diagonal element of the matrix (A A) (this assumes that
diagonal elements of the matrix P; are relatively small) and

,j =  K(i, j), j > 1 (A-14)

The standard deviation of the ith estimated parameter is given by

1/2
(n2

S L (,8ij - ) 2 (A-15)

Define the error sensitivity matrix as

S = {pi,3 } i =  1, 2, -'" n, j = 0, 1, * n 2 (A-16)

14



And finally define the Alias Matrix as

L = Sa (A-17)

where

o 0  0

(A-18)

0 "o-
n 2

The standard deviation of the ith estimated parameter is seen to be the root sum

square of the terms in the ith row of the alias matrix. The elements in the first

column of the alias matrix represent the RSS contribution to the standard devia-

tion of each estimated parameter due to the data noise. The elements in the jth

column, j > 2, represent the RSS contribution to the standard deviation of each

estimated parameter due to the j - 1st unadjusted parameter.

Possession of the alias matrix reveals much of the probability structure of the

postulated least squares estimator. With this information one can quickly de-

termine which error sources are significant with regard to the estimation of a

given parameter.

Propagating Covariance Matrices

Equation 9 provides the covariance matrix of the state I at some specified

epoch. In many cases it is important to determine how accurately the state

can be determined at some time other than epoch. In order to do this cor-

rectly it is necessary to take into proper account uncertainties in dynamic

parameters. These parameters may be in an estimated mode or in an un-

adjusted mode and to incorporate their effect one resorts to state transition

matrices which presumably have been precomputed by an orbit determination

program. Let '~ (T) be the estimated state at time T. Assume as output from

an orbit determination program the state transition matrices

S(T) =  , (T) = (A-19)

15



If there are no dynamic parameters in the estimation vector x 1, the matrix

V, (T) takes on the particularly simple form,

V, (T) = 0 (A-20)
0 1

where 8 is the six by six matrix defined as the partial derivative matrix of the
state of the satellite at time T with respect to the state of the satellite at epoch.
If dynamic parameters are included in the estimated state, the off diagonal
matrices become non-zero and v, (T) assumes a more complicated form.
The matrix v2 (T) is the matrix of partial derivatives of the state 1 (T) with
respect to the unadjusted parameters 2 . If no dynamic parameters are in
the unadjusted mode, v 2 (T) is the null matrix. A first order Taylor series
expansion of the function which describes the time evolution of the state x, (T)
yields

x1 (T) = v, (T) x, + 2 (T) x 2  (A-21)

Substituting x 1 as obtained from Equation 6 for I , and x 2' for 2 provides the
best estimate x, (T), of 1 (T)

x, (T) = v, (T) x,1 + 2 (T) x; (A-22)

The covariance matrix of , (T) is given by

P(T) = V, (T) PvT (T) + v (T) P2T (T) + V (T) E [xxx ] 2(T)

+ V2 (T) E [x2 xT] VT (T) (A-23)

Equation 23 in conjunction with Equations 6 and 9 yields

P(T) = V (T) (AT wA + P;1)- 1 (T) + [ V(T) (AT wA + P;1)-i AT wB

- v 2 (T)] P2 [v(T) (ATwA + P 1)-1 ATwB - v 2 (T)T (A-24)

16



Finally notice that in much the same fashion that Equation 9 was used to de-
velop an alias matrix at epoch, Equation 24 can be utilized to develop an alias
matrix for any time T.

REMARKS

If one possesses a functioning orbit determination program it becomes a rela-
tively easy matter to add covariance analysis capability to the system. A com-
puter program can be written which assumes as input a normal matrix and state
transition matrices as generated by the orbit determination program. By
permuting the rows and columns of the normal matrix and completing the
matrix operations defined by Equation 9, the covariance matrix of a least
square process which adjusts any subset of the parameters and ignores the
rest can be computed. An alias matrix can be obtained and significant error
sources can be identified. By utilizing the precomputed state transition matri-
cies, the covariance matrix of the estimate of the state can be propagated from
epoch to any other time. These operations are very simple and they consume
little computer time.

Since the normal matrix and state transition matrices are computed once and
permanently stored, it is possible to investigate a large number of possible
estimation strategies. This can be done conveniently and cheaply. For many
applications such a program is a useful and quickly developed addition to an orbit
determination system.

NASA-GSFC
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